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SUMMARY 
A formulation of an implicit characteristic-flux-averaging method for the unsteady Euler equations with 
real gas effects is presented. Incorporation of a real gas into a general equation of state is achieved by 
considering the pressure as a function of density and specific internal energy. The Riemann solver as well as 
the flux-split algorithm are modified by introducing the pressure derivatives with respect to density and 
internal energy. Expressioiis for calculating the values of the flow variables for a real gas at the cell faces are 
derived. The Jacobian matrices and the eigenvectors are defined for a general equation of state. The solution 
of the system of equations is obtained by using a mesh-sequencing method for acceleration of the 
convergence. Finally, a test case for a simple form of equation of state displays the differences from the 
corresponding solution for an ideal gas. 
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1. INTRODUCTION 

Current interest in hypersonic flow fields has led to the development of methods for complex 
chemical non-equilibrium real gas flows. Until now, some numerical methods have provided very 
accurate results for the flow of an ideal gas.’.’ The reliability of these methods has been proved 
for two-dimensional fields3 as well as for three-dimensional cases.4 

The study of non-equilibrium flows requires as a first step the extension of known methods to  
real gas flows. The formulation of numerical methods for real gases is not yet direct. In this paper 
the formulation of a very efficient, implicit Riemann solver3 for real gases is presented. 

The derivation of the relations that yield the values of the flow variables on the cell faces is 
described. Moreover, the Jacobians of the flux vectors and the eigenvector matrices are defined 
for a general equation of state. The present finite volume algorithm does not consider any 
approximation of the interpretation of the real gas effects. The only consideration is the definition 
of pressure as a function of density and specific internal energy. Thus the pressure derivatives with 
respect to the density and the specific internal energy are incorporated in the equations. 

Another flux-split algorithm has recently been developed by Glaister.’ The incorporation of 
real gas effects has also been described by Colella and Glaz6 using an approximate procedure 
based on a local parametrization of the equation of state. Grossman and Walters7 have 
considered another approach to flux-splitting algorithms; they treat the real gas by an equivalent 
y-representation, as suggested in Reference 4. 
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2. GOVERNING EQUATIONS AND TIME INTEGRATION 

The governing equations of an inviscid compressible fluid in two dimensions are the two- 
dimensional Euler equations. The Euler equations can be written in conservation law form for a 
generalized co-ordinate system as 

U, +E, + G, = 0, (la) 

where 

U = J ( P ,  PU, PW, elT, 

E = ~ ( p  u", p f i u  + ptX, pw u" + pr,, (e + P )  QT, 

G = ~ ( p  IF, p u  ct+ PC,,  pw ct+ pcZ ,  (e + P )  IF)T, 
u" = u t x + w t z ,  @=ucx+wcz, e = p i + 0 * 5 p ( u ~ + w ~ ) .  ( W  

Body-fitted arbitrary co-ordinates t, 5 are used and the Jacobian of the transformation 
< = <(x, z ) ,  c = c(x, z )  from Cartesian co-ordinates x, z to generalized co-ordinates is written as 

J = x~z(-z,x,. 

The quantities p , P , u  and w represent the density, the pressure and the Cartesian velocity 
components respectively, while e and i are the total energy and the specific internal energy 
respectively. The indices ( ),, ( ), denote partial derivatives with respect to x, z. The formulation of 
the governing equations is completed by a general equation of state of the form 

P = P ( p ,  i). 

The last equation for an ideal gas is written as 

P = ( y  - l ) p i ,  

where y is the ratio of the specific heat capacities of the fluid. 

high CFL numbers.' The first-order-in-time, discretized implicit form of (1) is written as 
To reach the steady state solution asymptotically, an implicit procedure is used which allows 

A Newton method can be constructed for U"+l by linearizing the fluxes in (2) about the known 
time level n:2*4 

En+' = E" + A"AU, G"+l = G" + C"AU. 

These relations allow (2) to be written in the form 

AU 
A t  

-+(A"AU),+(C"AU)C =-(E:+GF) = RHS, (3) 

where 

aG C = -  aE 
au A = - ,  au 
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are the Jacobians of the flux vectors E and G respectively and 

A U  = Un+' -U" 

is the time variation of the solution. 
The development of the method for obtaining the solution in the case of a general equation of 

state consists of two parts. The first part treats the terms on the right-hand side (RHS). For this 
part of the solution a linear, locally one-dimensional Riemann solver (Godunov-type differencing) 
is employed at the cell faces of the finite volume.' 

The characteristic-flux-averaging procedure is of third-order accuracy in space and locally 
m o n o t ~ n i c . ~ . ~  The above method is presented in this paper for a general equation of state in 
order to study equilibrium gas flows, and is the first step of the extension of the algorithm to non- 
equilibrium real gas flows. 

The second part is related to the terms on the left-hand side (LHS) and particularly with the 
expressions of the Jacobians A and C for the general equation of state. 

3. REAL GAS FORMULATION OF THE CHARACTERISTIC FLUX-AVERAGING 
SCHEME 

In order to reduce the complexity, we split the Euler equations into two one-dimensional 
equations: 

U, + E, = 0, U,+G, = 0. 

The Riemann invariants are a transformation of the non-conservative Euler equations on the 
characteristic directions.8 These invariants are given by 

P - P o - s ' ( p - p o )  = 0, (44 

( w - w o ) x - z ( u - u o )  = 0, (4b) 

P - P ,  + p s [ x ( u - u , ) + z ( w - w , ) ]  = 0, (44 

P - P z + p s [ - x ( u - u , ) - z ( w - w z ) ]  = 0. ( 4 4  
The subscripts indicate the point locations ( 5  - t j A t ,  t )  at which Pi, p j ,  uj and w j ,  j = 0, 1,2, 
should be interpolated. 

If we consider the cell face i -  1/2 between the finite volumes i and i +  1, we calculate from the 
arithmetic mean the eigenvalues and we form a mean state for the flow variables according to the 
formula 

~ j - , , ~  =+[(I +signAj)u{+(l -signAj)~!]. 

The subscripts '1' and 'r' denote the left and right states respectively in accordance with 
Reference 8. The order of accuracy of the flux difference operator is controlled by the definition of 
the left and right states.8 As an example, the third-order formula is given by 

u, = i ( 5  ui- 1 - ui- 2 + 2 ui), u, = &(5 ui - ui+ 1 + 2 ui- 1). 

Since we make use of the homogeneous property, the invariants have to be inverted in 
conservative variables. Considering that the pressure can be written as a function of density and 
specific internal energy, P = P ( p ,  i), we obtain 

A P  = P , A p + P i A i .  (5a) 
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Our goal is to formulate the equations by means of the pressure derivatives P, and Pi.  The 
transformation relations are completed by 

where 1 = pu and n = p w .  
From (lb) we take 

A1 - u A ~  
P 

AU = Y 

A n  - w A p  
P 

AW = , 

21Al+ 2nAn l 2  + n2 
A ( p i )  = A e -  +- 2p2 A p .  

2P 

The term A ( p i )  can be written as 

A ( p i )  = p A i  + i A p .  

From (6) we obtain 

p A i  = A e - ( u A l  + A n ) + 0 . 5 q 2 A p -  i A p ,  (7) 

where 

q 2  = u 2 + w 2 .  

Substitution of A i  from (7) in (5) yields 

(8) 

The Riemann invariants (4aH4d) can now be transformed by means of (5b), (5c) and (8). 
Analytically, the four invariants are written as 

[ ( e -  e o ) -  u ( l -  lo ) - -  w ( n  - no)]  = 0, (94 

(9b) ( p  - p o ) ( u z  - w x )  - ( I  - Io)z + ( n  - no)x  = 0, 

Since each of the last five expressions is zero, their weighted sums must also be zero. 
Multiplying each of them by the coefficients a, b, d and f and adding, we obtain 

p p  + l r + n i + e t ?  = pop + lor+ n o i + e o t ? +  2 s 2 ( d R ,  + f R 2 ) ,  (94 
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where 

L 

with 

A0 = ux + w z ,  

The sound velocity s is given by 

The term Q is given by 

The system of equations (lOaj(10d) needs to be inverted for coefficients d and$ If we multiply 
(lob) by x and (1Oc) by z and add, we obtain 

i x  + nz + elo 
d - f =  

S 

Addition of (10a) and (lob) multiplied by u and (1Oc) multiplied by w yields 

j + iu+ iiw + e H  
d + f =  

S2 

The above relations have been obtained by using the known identities 

x2 + z 2  = 1, A , = u x + w z .  

The total enthalpy H is given by 

e + P  H=-. 
P 
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From (1 la) and (1 lb) we obtain the coefficients d and f: 

0.5 - - 
d = 7 CP + I(u + sx) + i ( w  + sz) + e ( H  + S A , ) ] ,  

f= ~ C P + ~ ( U - S X ) + n ( w - s z ) + ~ ( H - s ~ , ) ] .  (13b) 

(134 

0.5 - - 

The above relations have also been found by Eberle* for the ideal gas equation of state, but for 
a real gas the velocity of sound is defined by (1Oe) and the total enthalpy by (12) or by 

(14) 
P 
P 

H = ~ + O * ~ ( U ~ + W ~ ) ) + - - .  

Putting p equals to unity and z i ,  and 2 equal to zero in (13a) and (13b) and using the scalar 
invariant (9e), we write out the p. Similarly, we find the conservative cell face flow values I, n and e 
from which the Euler fluxes on the RHS of (3) can be calculated. The conservative values are given 
by 

p = P o + P + r , + r , ,  ( 154 
I = I ,  + r l (u  + sx) + r2(u - sx) + x d + u p ,  (15b) 

n = no + r l ( w  + sz)+ r2(w - sz)+ zd + wp, ( 154 

e = d A , + ( H + s A , ) p , + ( H - s A , ) p , + ~ + p  (154 

with 

pl(-sAo+Q)+Il 

4. FORMULATION OF THE FLUX-SPLITTING ALGORITHM FOR REAL GASES 

In this section the analysis of the flux-splitting procedure is presented. This formulation is needed 
for the calculation of the terms on the LHS. The terms (A"AU), and (C"AU), are d i~c re t i zed~ .~  at 
the volume i, k up to second-order accuracy in space. For example, the term (A"AU), is written as 

(A"AU), = (AnAU)i+1/2-(A"AU)i-1/2, (174 

( 17b) 

( 174 

where 

( A"AU) i + 1 / 2 = (TA + T - )i + 1 / 2  AIJ i', 112 + ("A - T - ) i  + 1 /2  AIJ i-t 112 9 

(A"AU), - 1/2 = (TA+ T- )i - 1/2  AU :- 112 + (TA - T- l) i  - 1/2 AUL- 1/2,  
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A+ and A- are the diagonal matrices of the positive and negative eigenvalues of the Jacobian A 
respectively. These matrices are defined as 

A+ = max (0, A), A- = min(0, A). 

The eigenvalue matrix A is diagonal, 

A = diag(Ai, A:, A;, At), 
with elements 

A: = A: = Uk,+wk,, A: = A,O+s(Vk(, A,J = A,O-slVk(. 

The above elements define the eigenvalues of the matrices A and C for k = 5 and k = [ 
respectively. 

The vectors AU are extrapolated consistently to the RHS.4 For the finite volume face (i + 1 /2, k), 
AU is extrapolated up to second order depending on the eigenvalues. T and T-’  are the matrices 
of the left and right eigenvectors respectively. Implementation of the method in order to include 
equilibrium real gas effects is achieved by derivation of the Jacobian matrices and the eigenvectors 
for a general equation of state. For this reason, as with the expressions on the RHS, the matrices 
on the LHS are defined by introducing the pressure derivatives. The Jacobian matrix A is 
defined as 

A = - =  _ _ _ -  au aE (aE ap’ aE a /  ’ aE an’ aE)* ae 

In accordance with the assumption that the pressure is a function of density and internal 
energy, the partial derivatives for the pressure are given by the relations 

and the internal energy is defined by 

e 1’ + n2 
P P2 

i ( p ,  1, n, e) = --0.5 -. 

The Jacobian matrices and the eigenvectors for an ideal gas can be found in Reference 9. For a 
real gas the same quantities are defined as follows: 

A ( k  = 51, C ( k  = [) = (aij), i , j  = 1,2,3,4, 

a , ,  = 0, a12 = k,, a 1 3  = k,, a14 = 0, 

a 2 2  = A,,,,,( 1 -$), 
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a31 = - w l ,  + k,Q, 

Pi a43 = H k ,  - w l o  -, 
P 

the left-eigenvector matrix 

- I 

e3 =( l , u + s k , , w + s k , , H + s - -  

e4 = ( 1 ,u - sk , ,w- sk , ,H-s - -  
- - 

with 

0.5 4' .pi 
2 P  P 

p = -  Q = P , , + P i - - - - .  - k,  k, = - 
IVkA' s2 ' 

All equations and matrices have been defined in accordance with the pressure derivatives with 
respect to density and internal energy. These can be found by an available equation of state or by 
curve fitting. 
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5. INVERSION OF THE SYSTEM O F  EQUATIONS AND ACCELERATION OF THE 
CONVERGENCE 

The solution of the system of equations (3) which includes the real gas effects is obtained by the 
sequence of approximations denoted by q' such that lim q' + U"+ ' , where v is the subiteration 

state. The equations are solved by a Newton method." The Newton form is obtained by 
linearization of (3) around the known subiteration state v as follows: 

v > l  

Aqv+' U" - q' 
A t  + (A'Aq'+')e + (,'A,'+ 'k = dt- (E; + G;) = RHS, 

where q' and q'+l are the solution vectors at the subiteration states v and v + 1 respectively. The 
solution at level v + 1 is updated as 

q'+l = q'+Aq'+', 

Acceleration of the convergence of the above finite volume method is obtained via a mesh- 
sequencing procedure." The acceleration is achieved by using a coarser grid for a number of 
iterations during the convergence. The solution is obtained first on a sequence of coarser grids 
and then by interpolation up to the next finer grid. A coarse mesh can easily be formed by 
discarding lines of the fine mesh. 

The rate of convergence for supersonic flows is usually faster than that of transonic flows. 
The total computational real time for supersonic and hypersonic flows is estimated at about 
25%-30% of the real time if the fine grid were used for the entire calculation. 

The most sensitive part of the method is the interpolation procedure. For this reason, a special 
treatment has been under development'* which promises better results for the Euler and 
Navier-Stokes equations. 

6. RESULTS 

In this section the results of the flow around a 4% circular arc airfoil with freestream Mach 
number 4 at zero angle of attack are presented. Because of the symmetry, we study the half-plane 
using symmetry conditions on the upstream and downstream parts along the x-axis. The 82 x 31 
computational grid used is shown on Figure 1. Results are given both for an ideal gas and for 
another simple form of the equation of state. 

The ideal gas equation of state can be written in the form 

P = ( y  - 1)p i .  (18) 
The ratio of the specific heat capacities depends on the gas. Typical values of y are 1.4 for a 
diatomic gas and 1.2 for tetrafluoromethane. A simple extension of the ideal equation of state is 
the stiffened equation of state, which can be written as 

P = c  - -1  + ( y - l ) p i ,  to ) 
where pa is a reference density and c is a constant. The value of c depends on the non-dimensional 
variables. The pressure derivatives for an ideal gas are calculated by the relations 

P, = ( y  - l)i, Pi = ( y  - 1)p. 
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Figure 1. Computational grid 
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Figure 2. (a) Temperature and (b) density values along the x-axis for the stiffened equation of state (EOS) ( M  = 4, 
y = 1.2) 

For a general equation of state the pressure derivatives can be calculated by an approximation 
formula. Glaister’ proposed the approximations 

for Ai  = 0, Ap = 0, where 
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Figure 3. (a) Temperature and (b) density values along the x-axis for a perfect gas ( M  = 4, y = 1.2) 
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Figure 4. Differences in temperature values: 1, perfect gas (P.G); 2, stiffened EOS (R.G) ( M  = 4, y = 1.2) 
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~ 

Figure 5(a). Iso-temperature lines for a perfect gas (A4 = 4, y = 1.2) 
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The indices R and L represent, for a cell face i +  1/2, the volumes i +  1 and i respectively. For 
Ai  = 0, A p  = 0 we can also use the relations 

Pp = (7- l)i, Pi = (7- l)p, (221 

where 

Figure 5(b). Iso-density lines for a perfect gas (M = 4 ,  y = 1.2) 

Figure 6(a). Iso-temperature lines for stiffened EOS (M = 4 ,  y = 1.2) 
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In Figures 2(a) and 2(b) the temperature and density values respectively along the x-axis for the 
stiffened equation of state with y = 1.2 are presented. The corresponding results for an ideal gas 
with y = 1.2 are shown in Figures 3(a) and 3(b). The differences in the temperature values are 
shown in Figure 4. We see that the temperature jump on the leading edge and on the trailing edge 
is higher. The iso-temperatures and iso-density lines for the equations of state (18) and (19) have 
been plotted in Figures 5(a), 5(b) and 6(a), 6(b) respectively. 

In Figure 7 we can see that the iso-temperature lines (R.G) for (19) have a smaller inclination 
with respect to the x-axis than the corresponding lines (P.G) for a perfect gas. The differences in 

Figure 6(b). Iso-density lines for stiffened EOS (M = 4, y = 1.2) 

Figure 7. Comparison of iso-temperature lines between perfect gas (P.G) and stiffened EOS (R.G) (M = 4, y = 1.2 ) 
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Figure 8. Comparison of temperature values: 1 ,  perfect 
gas (M = 4, y = 1.4); 2, stiffened EOS (M = 4, y = 1.2) 

Figure 9. Comparison of pressure values: 1, perfect gas 
(M = 4, y = 1.4); 2, stiffened EOS (M = 4, y = 1.2) 

Figure 10. Iso-temperature lines for a perfect gas (M = 4, y = 1.4) 

the temperature and pressure values between the ideal gas equation of state for y = 1.4 and the 
stiffened equation of state for y = 1.2 are quite significant and are shown in Figures 8 and 9 
respectively. The iso-temperature lines for an ideal gas with y = 1.4 are presented in Figure 10. 
The above results have been obtained by a mesh-sequencing technique with a computational gain 
of about 30%. 

The convergence history using three meshes versus a single grid is shown in Figure 11. The 
computational cost does not increase for the real gas algorithm of the present study using the 
simple extension of the ideal gas equation of state. The method needs only the pressure values 
from a curve fit. Thus the computational cost is expected not to be increased by using curve fits. 

All the calculations have been performed on a DEC 3100 system. The computational time is 1 h 
without mesh sequences and 40 min using mesh sequences. 
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Figure 11. Convergence history: 1, mesh sequencing (three meshes); 2, single grid 

7. CONCLUSIONS 

In this paper the formulation of a Riemann solver with flux splitting for a general equation of 
state is presented. The relations for the calculation of the conservative variables on the cell faces 
are written including the pressure derivatives with respect to density and specific internal energy. 

For the implicit part of the method the Jacobians and the eigenvector matrices are modified. 
Further relations are not needed for the computation of a real gas, except for the approximate 
calculations of the pressure derivatives from the formulae (20a, b), (21a, b) or (22). Thus the 
computational cost does not increase for the real gas algorithm. 

A test case with a simple form of the equation of state shows the capability of the algorithm to 
simulate real gas flows. Using curve fits for equilibrium air, we intend to present results for high- 
temperature air in a future paper. 
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